UntypedSeries
public struct UntypedSeries : DataSeries
-
Declaration
Swift
public typealias Element -
Declaration
Swift
public func makeIterator() -> DataSeriesIterator<UntypedSeries> -
Declaration
Swift
public func prefetch(_ i: Int, streamContext: StreamContext?) -
Declaration
Swift
public func next(_ streamContext: StreamContext?) -> AnyObject? -
Declaration
Swift
public var underestmiatedCount: Int { get } -
Declaration
Swift
public let count: Int -
Combine tensors into one tensor. This is useful for GPU batching.
Declaration
Swift
public func combine(size: Int, repeating: Int? = nil) -> DataFrameParameters
sizeHow many tensors to group together.
repeatingHow many new columns to be created.
Return Value
A new dataframe with combined tensors.
-
Load images into tensors. It is expected to be called from a column with file paths.
Declaration
Swift
public func toLoadImage() -> DataFrame.UntypedSeries -
Create one-hot tensors. It is expected to be called from a column with Int.
Declaration
Swift
public func toOneHot<Element: TensorNumeric>( _ dataType: Element.Type, count: Int, onval: Float = 1, offval: Float = 0 ) -> DataFrame.UntypedSeries -
Copy tensor to GPU. It is expected to be called from a column of tensors.
Declaration
Swift
public func toGPU(_ ordinal: Int = 0) -> DataFrame.UntypedSeries -
Declaration
Swift
public func toOneSquared(maxLength: Int, variableLength: Bool = true) -> DataFrame.UntypedSeries -
toImageJitter(_:size: resize: contrast: saturation: brightness: lighting: aspectRatio: symmetric: seed: centerCrop: offset: normalize: ) Apply some jitter to loaded images.
Declaration
Swift
public func toImageJitter<Element: TensorNumeric>( _ ofType: Element.Type, size: ImageJitter.Size, resize: ImageJitter.Resize, contrast: Float = 0, saturation: Float = 0, brightness: Float = 0, lighting: Float = 0, aspectRatio: Float = 0, symmetric: Bool = false, seed: Int = 0, centerCrop: Bool = false, offset: ImageJitter.Offset = ImageJitter.Offset(x: 0, y: 0), normalize: ImageJitter.Normalize = ImageJitter.Normalize(mean: []) ) -> DataFrame.UntypedSeries -
Sample existing column to create a new dataframe.
Declaration
Swift
public func sample<T, U>(size: Int, repeating: Int? = nil, sampler: @escaping ([T]) -> U) -> DataFrameParameters
sizeHow many rows to be sampled together.
repeatingWill we repeat the sampling to create more columns?
samplerThe sampling function, for example, averaging, max, first, last etc.
Return Value
A new dataframe.
-
Declaration
Swift
public static func from(_ scalar: Any) -> DataFrame.UntypedSeries -
Create a new column from a sequence of objects.
Declaration
Swift
public static func from<S>(_ sequence: S) -> DataFrame.UntypedSeries where S : Sequence -
Create a new column by applying some transformations on an existing column.
Declaration
Swift
public func map<T, U>(_ mapper: @escaping (T) -> U) -> DataFrame.UntypedSeries
UntypedSeries Structure Reference